Reflection mode photoacoustic measurement of speed of sound
نویسندگان
چکیده
منابع مشابه
Reflection mode photoacoustic measurement of speed of sound.
We present a method to determine the speed of sound in tissue using a double-ring photoacoustic sensor working in reflection mode. This method uses the cross-correlation between the laser-induced ultrasound waves detected by two concentric ring shaped sensors, while a priori information about the depth-position of the photoacoustic source is not required. We demonstrate the concept by estimatin...
متن کاملReflection-mode multifocal optical-resolution photoacoustic microscopy.
Compared with single-focus optical-resolution photoacoustic microscopy (OR-PAM), multifocal OR-PAM utilizes both multifocal optical illumination and an ultrasonic array transducer, significantly increasing the imaging speed. A reflection-mode multifocal OR-PAM system based on a microlens array that provides multiple foci as well as an ultrasonic array transducer that receives the excited photoa...
متن کاملDeep reflection-mode photoacoustic imaging of biological tissue.
A reflection-mode photoacoustic (PA) imaging system was designed and built to image deep structures in biological tissues. We chose near-infrared laser pulses of 804-nm wavelength for PA excitation to achieve deep penetration. To minimize unwanted surface signals, we adopted dark-field ring-shaped illumination. This imaging system employing a 5-MHz spherically focused ultrasonic transducer prov...
متن کاملIn vivo dark-field reflection-mode photoacoustic microscopy.
Reflection-mode photoacoustic microscopy with dark-field laser pulse illumination and high-numerical-aperture ultrasonic detection is designed and implemented in noninvasively imaged blood vessels in the skin in vivo. Dark-field optical illumination minimizes the interference caused by strong photoacoustic signals from superficial structures. A high-numerical-aperture acoustic lens provides hig...
متن کاملReflection-mode submicron-resolution in vivo photoacoustic microscopy.
Submicron-resolution photoacoustic microscopy (PAM) currently exists only in transmission mode, due to the technical difficulties of combining high numerical-aperture (NA) optical illumination with high NA acoustic detection. The lateral resolution of reflection-mode PAM has not reached <2 μm in the visible light range. Here we develop the first reflection-mode submicron-resolution PAM system w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2007
ISSN: 1094-4087
DOI: 10.1364/oe.15.003291